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Dipartimento di Fisica e Tecnologie Relative, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
and
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Received 30 November 2006 / Received in final form 12 February 2007
Published online 9 March 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. I consider the problem of the optimal limit order price of a financial asset in the framework
of the maximization of the utility function of the investor. The analytical solution of the problem gives
insight on the origin of the recently empirically observed power law distribution of limit order prices. In
the framework of the model, the most likely proximate cause of this power law is a power law heterogeneity
of traders’ investment time horizons.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.40.Jc Brow-
nian motion – 89.75.Da Systems obeying scaling laws

1 Introduction

In the last years physicists have shown a considerable in-
terest in the empirical investigation of statistical regular-
ities in socioeconomic systems. The next step of this type
of investigation should be the understanding of the origin
of the discovered statistical regularities. Ultimately the ex-
planation should be given by modeling the behavior and
the preferences of the agents playing in the system. How-
ever there is often a significant mismatch between the way
of modeling how agents’ preferences are matched and the
real mechanism through which agents take their decision
and meet other agents’ preferences. Consider for exam-
ple agents in a financial market. The theory of supply
and demand describes how prices fluctuates as the result
of a balance between product availability at each price
and the desires of buying at each price. However in any
real financial market, agents refrain from revealing their
full supply or demand, trade incrementally large orders,
choose strategically the timing and the amount of sup-
ply or demand they put in the market. In other words
the agent’s decision making process takes into account
the specific way in which market works. Financial mar-
kets are an optimal system to study agents’ preferences
and decision making strategies and their effect on statis-
tical regularities of financial time series. This is due to
the large availability of detailed data and to the relatively
simple market structure. Several papers have been pub-
lished on the optimal strategy of traders but these studies
consider mainly a specific type of trader, the dealer or liq-
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uidity provider [1–4]. A paper more related to the present
one but that consider a simplified price dynamics is refer-
ence [5]. The market structure of most financial markets is
the limit order book (or continuous double auction). The
limit order book is a queue where the list of buy and sell
limit orders are stored. A limit order is an order to buy
or to sell a given amount of shares at a specified price or
better. If there is no one in the market willing to sell or
buy at these conditions, the limit order is stored in the
book and the agent can wait until the price hits the limit
price and the transaction occurs. Of course the trader has
the freedom to cancel her limit orders when she wants to.
The decision on the limit price and volume of the order is
a typical case of decision making under risk. In this pa-
per I consider the problem of limit order placement in the
framework of decision making.

One of the statistical regularities recently observed in
the microstructure of financial markets is the power law
distribution of limit order price in continuous double auc-
tion financial markets [6,7]. Let b(t)−∆ denote the price
of a new buy limit order, and a(t) + ∆ the price of a new
sell limit order. Here a(t) is the best ask price and b(t) is
the best sell price. The ∆ is measured at the time when
the limit order is placed. Different authors have investi-
gated the probability distribution for the quantity ∆ in
different financial markets. It is found that p(∆) is very
similar for buy and sell orders. Moreover for large values
of ∆ the probability density function is well fitted by a
single power-law

p(∆) ∼ 1
∆ζ∆

. (1)
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There is no consensus on the value of the exponent ζ∆.
Farmer and Zovko [6] estimated the value ζ∆ = 2.5
for stocks traded at the London Stock Exchange (LSE),
whereas Potters and Bouchaud [7] estimated the value
ζ∆ = 1.6 for stocks traded at the Paris Bourse. More re-
cently Mike and Farmer [8] fitted the limit order distribu-
tion for LSE stocks with a Student’s distribution with 1.3
degrees corresponding to a value ζ∆ = 2.3. In their study
Farmer and Zovko studied also the correlation between
limit order placement and volatility. They found a sig-
nificant simultaneous cross correlation between volatility
and limit order placement, indicating that when volatil-
ity is high, traders tend to place limit orders with larger
values of ∆. Moreover a lagged cross correlation analysis
indicates that volatility leads relative limit price.

In this paper I investigate the origin of this power law
distribution. To achieve this goal it is important to model
the way in which traders placing limit orders decide the
limit price of their orders. Suppose that a trader wants to
place a limit order to sell. If she choose a very high limit
order price she potentially makes a large profit, but it is
unlikely that the order is matched in a reasonable time. On
the other hand if the limit order price is close to the actual
best available sell limit price, the limit order is likely to
be matched in a short time but the profit is small. The
right limit order price is the result of a tradeoff between
these two choices and it depends on the characteristics of
the agent as well as of the market state.

The paper is organized as follows. In Section 2 I intro-
duce the problem of limit order placement and the model-
ing of the decision making process. I also find the solution
to the problem in some specific but important cases. In
Section 3 I use the result of the optimization to investi-
gate the origin of power law tail in the limit order price
distribution. In Section 4 I perform an empirical inves-
tigation to test the results of the model and Section 5
concludes.

2 The utility maximization problem

Expected utility is probably the most important theory
of decision making under risk [9]. An individual is faced
with a prospect (or lottery) (x1, P1; ...; xn, Pn) which is a
contract that yields outcome xi with probability Pi, where∑n

i=1 Pi = 1. Expected utility theory postulates the exis-
tence of an utility function u(x) and the expected utility
of the prospect is

U(x1, P1; ...; xn, Pn) =
n∑

i=1

Piu(xi). (2)

When confronted with more prospects, the individual
chooses the one which maximizes the expected utility U .
Different individuals may have different utility functions
u(x). Usually the function u(x) is concave, i.e. u′′ < 0
which implies risk aversion. A very common utility func-
tion is the constant relative risk aversion utility function
(or power utility function)

u(x) = C xα. (3)

In this equation α measures the level of risk aversion,
which is larger for smaller α. The value α = 1 describes
a risk neutral individual, i.e. an individual for which ex-
pected utility is proportional to expected value of the lot-
tery

∑
Pixi. Constant relative risk aversion implies that

the percentage of wealth one is willing to expose to risk
remains unchanged as wealth increases. In this paper I
make use of the utility function of equation (3). However
the results of the papers remain valid also for other (but
not all) forms of the utility function. In Section 5 I com-
ment on this point while in the Appendix I consider the
case of a logarithmic utility function, u(x) = C log(1+cx).
Expected utility has been criticized because it fails in de-
scribing some behavioral biases in decision making (for a
recent review see [10]).

Consider the limit order placement as a problem of
utility maximization. On one hand traders would prefer to
place limit orders very far from the spread (i.e. with large
values of ∆) because this will increase trader’s profit. On
the other hand the larger the ∆ the longer (on average)
the time one has to wait until the limit order is fulfilled.
So the trader has to find the right tradeoff between these
two opposite choices. The right place where to place the
limit order depends in general from three characteristics
of the trader. First of all the optimal ∆ depends on the
patience of the trader. To model this aspect we introduce
the time horizon T of the trader, which is here defined
as the time the trader is willing to maintain the limit
order in the book before canceling it (if not matched). The
second characteristic is the volatility σ used by the trader
to model price dynamics. When the volatility is high, price
fluctuates more and the trader places limit orders with
larger values of ∆. Finally the third characteristic is the
utility function u(x) of the trader. All else being equal,
more risk averse traders place limit orders closer to the
best price.

The limit order placement problem can be formal-
ized as follows. Given an time horizon T , an utility func-
tion u(x), a volatility σ, and a limit order price ∆,
the prospects facing the investor is (∆, P (∆, T, σ); 0, 1 −
P (∆, T, σ)), i.e. she gains ∆ with probability P (∆, T, σ)
if the limit order is matched in a trade in a time shorter
than T or she gains 0 with probability 1−P (∆, T, σ) if the
limit order is canceled before the price reaches the limit
order price1. The trader’s expected utility is

UT,σ(∆) = P (∆, T, σ) u(∆) + (1 − P (∆, T, σ)) u(0). (4)

Without loss of generality we can set u(0) = 0 because the
expected utility can be rewritten as P (∆, T, σ)(u(∆) −
u(0)) + u(0) and the value of ∆ maximizing the utility
u is the same as the value maximizing u − u(0). Thus
to each limit order price it is associated a lottery with a
different expected utility UT,σ(∆) = P (∆, T, σ) u(∆) and
the trader maximizes her utility by choosing the lottery

1 To be precise the order is matched when the opposite best
price reaches the limit order price. For this reason ∆ should be
the distance of the limit order price from the same best plus
the spread. Since we are interested in large values of ∆ the
spread can be neglected.
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with the largest expected utility. In other words trader
maximizing utility places limit orders at the value of ∆
which maximizes UT,σ(∆), i.e. ∆∗ ≡ argmax[UT,σ(∆)].

In order to explicit the functional form of UT,σ(∆) we
need to find the expression for P (∆, T, σ) which is the
probability that the price random walk reaches the level
∆ between t = 0 when the limit order is placed and t =
T when the limit order is canceled. This probability is
related to the first passage time distribution, which is the
probability that a stochastic process reaches a given level
x for the first time at time t. Assuming that the price
performs a Brownian motion with diffusion rate σ, the
first passage distribution is (see for example [11])

f(∆, t) =
∆√

2πσ2t3
exp

[

− ∆2

2σ2t

]

. (5)

Thus the probability that the limit order is fulfilled in the
interval 0 ≤ t ≤ T is

P (∆, T, σ) =
∫ T

0

f(∆, t) dt = erfc
[

∆√
2σ2T

]

. (6)

Let us assume that trader has a constant relative risk aver-
sion utility function with exponent α , then the function
to be maximized is

UT,σ(∆) = erfc
[

∆√
2σ2T

]

C∆α. (7)

Figure 1 shows the dependence of UT,σ(∆) from the pa-
rameters.

The maximization of UT,σ(∆) is obtained by deriva-
tion with respect to ∆. The maximum cannot be found
analytically, but a simple scaling argument helps in un-
derstanding the solution. The equation ∂∆U = 0 can be
rewritten as

C∆α−1

[

α erfc[z] − 2√
π

ze−z2
]

= 0 (8)

where I have set z = ∆/
√

2σ2T . The solution of the equa-
tion obtained by putting to zero the term in square bracket
can be obtained formally by solving the equation in α

α =
2√
π

z e−z2

erfc[z]
≡ g(z) (9)

which gives z = g−1(α) and with this position one obtains
for ∆ the optimal value

∆∗ =
√

2g−1(α)σT 1/2. (10)

This is the solution to the utility maximization problem
and the rational trader should put the limit order at a dis-
tance ∆∗ from the corresponding best price. Equation (10)
holds for power law utility functions. In the Appendix A
show that logarithmic utility function leads to the relation
∆∗ ∼ T 1/2/ log T , i.e. there is a logarithmic correction to
the square root relation.

Fig. 1. Expected utility UT,σ(∆) of equation (7) as a function
of the distance ∆ of the limit price from the corresponding best.
The panels show the dependence of UT,σ(∆) from the time
horizon T (top), the volatility σ (middle), and utility function
parameter α (bottom).

3 On the origin of power law distribution
of limit order prices

In the framework of the utility maximization model de-
scribed above, an homogeneous set of traders character-
ized by the same utility function (exponent α), the same
time horizon T and the same volatility estimation σ would
place limit order always at the same distance ∆∗ of equa-
tion (10) from the best. This is at odds with what observed
in real data, since, as we have discussed above, empirical
investigations show that the limit order price distribution
is very broad and probably compatible with a power law



456 The European Physical Journal B

with a small exponent. We can then ask what the ori-
gin of the power law distribution of limit order prices is
according to our model.

Since the optimal distance ∆∗ of equation (10) depends
on T , α, and σ, an heterogeneity in one of these three pa-
rameters would result in a distribution of ∆ with a non-
vanishing variance. I want to explore the possible role of
the three parameters in being the most likely proximate
cause of power law distribution of limit order prices. In
real markets one expects an heterogeneity in all the three
parameters, thus all contribute in principle to the distri-
bution of limit price. I will consider the three cases in
which two of the parameters are fixed and the third one is
allowed to vary according to some distribution in order to
see the separate effect of each parameter on the limit price
distribution. In the Conclusions I argue that this way of
proceeding is not a limitation.

Heterogeneity in time horizon. First of all let us con-
sider the role of the heterogeneity of time horizon T . I
assume that traders are characterized by a probability
density function PT (T ) of time horizon and that they are
homogenous with respect to the utility function and to
the volatility. From equation (10) the distribution of limit
order price is then given by

P∆(∆) = PT (T )
∣
∣
∣
∣
dT

d∆

∣
∣
∣
∣ ∝ PT (T )∆. (11)

The only way to have a power law distribution of limit
order price like in equation (1) is then to assume that the
distribution of time horizon is asymptotically power law
PT (T ) ∼ T−ζT . In this case the limit order price are power
law distributed with an exponent

ζ∆ = 2ζT − 1. (12)

Under these assumptions the power law distribution of
limit order prices is the consequence of the power law dis-
tribution of time horizon. By using the empirical values
for ζ∆ we can infer the value of ζT . The value ζ∆ = 2.5 ob-
tained by Zovko and Farmer [6] gives the value ζT = 1.75,
whereas the value ζ∆ = 1.6 obtained by Potters and
Bouchaud [7] gives the value ζT = 1.3. It is very diffi-
cult to measure empirically the statistical properties of
time horizon. However a recent paper by Borland and
Bouchaud [12] introduces a GARCH-like model obtained
by introducing a distribution of traders’ time horizons and
the model reproduces empirical values of volatility corre-
lation for ζT = 1.15, significantly close to our estimate.
An indirect estimate of the investment time horizon can
be derived from the lifetime of canceled limit orders. Us-
ing this method Challet and Stinchcombe [13] found an
exponent 2.1 at NASDAQ, and approximately the same
exponent is found at LSE by Mike and Farmer [8]. This
is an indirect method because it neglects filled orders. To
overcome this problem in reference [14] a model for limit
order submission and cancellation is fit to the LSE data
giving ζT ≈ 1.6. Finally in an unpublished work by Vaglica
et al. [15] an estimate of the time horizon distribution is
obtained for the Spanish Stock Exchange by computing

the time a given institution is (statistically) maintaining
its buy or sell position. The empirical distribution of time
horizon is power law with an exponent ζT � 2.3. In con-
clusion recent empirical results indicate the presence of a
power law distribution of investment time horizons. The
estimated value of tail exponent supports the view of the
heterogeneity of time horizon as the proximate cause for
fat tails in limit order prices.

In order to check whether the result of equation (12)
is valid only for power law utility function I consider also
a logarithmic utility function u(x) = C log(1 + cx). In the
Appendix A show that in this case

P∆(∆) ∼ 1
∆2ζT −1 (log ∆)2ζT −2

(13)

i.e., a part from a logarithmic correction, the limit or-
der price distribution is still asymptotically power law
with the same exponent as for power law utility func-
tion (Eq. (12)). The logarithm as well as its powers are
slowly varying functions [16]. In Extreme Value Theory
the presence of slowly varying functions is unessential to
the description to the asymptotic behavior of a function.
More precisely all the functions xαL(x), where L(x) is
any slowly varying function, belong to same Maximum
Domain of Attraction. As a consequence statistical esti-
mators of the tail exponent which are based on Extreme
Value Theory (for example the Hill estimator) give the
same exponent α independently on L(x). In other words
the presence of the logarithmic correction is invisible to
many tail exponent estimators. This means that utility
functions different from equation (3) may give the same
scaling exponent ζ∆.

Heterogeneity in utility. The second hypothesis we
want to test is whether power law distributed limit order
prices can be explained by only assuming heterogeneity
in utility function (i.e. in α), assuming that T and σ are
constant. Assuming a probability density function for α,
Pα(α) and by using equations (9) and (10), one can derive
the formula for the distribution of limit order price

P∆(∆) = Pα(α)
1√

2σ2T

[
4e−2z2

z

πerfc2(z)

+
2e−z2

√
πerfc(z)

− 4e−z2
z2

√
πerfc(z)

]

(14)

where as before z = ∆/
√

2σ2T . Since g(z) of equation (9)
is a convex monotonically increasing function of z, large
values of ∆ are explained by large values of α. The distri-
bution of limit price is determined by Pα(α) and in partic-
ular from its support. If for example the traders are risk
averse, α < 1 and also the support of P∆(∆) is bounded,
meaning that there is a maximal value of ∆ beyond which
traders do not place limit orders. However it is possible to
find a specific, yet quite artificial, distribution of the pa-
rameter α giving a power law distribution of limit order
prices. Not surprisingly the utility distribution is power
law, i.e. Pα(α) ∼ α−ζα in some interval of the exponent
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α governing the utility function of the traders. By ex-
panding equation (14) for large z (i.e. large ∆) I show
that the asymptotic behavior of limit price distribution is
P∆(∆) ∼ ∆−ζ∆ with ζ∆ = 2ζα − 1. In order to match the
empirical value for ζ∆ obtained by Zovko and Farmer one
has to postulate a power law distribution of the parameter
α with an exponent ζα = 1.75, whereas the Potters and
Bouchaud value gives ζα = 0.8. Note that this last value is
smaller than one implying that the support of Pα(α) must
be bounded from above. In conclusion the model is able
to deduce the power law distribution of limit order price,
but one needs to assume the presence of many investors
with very large values of α, i.e. unrealistically risk lover.

Heterogeneity in volatility. We now want to test the
last hypothesis that changing volatility could be the prox-
imate cause of power law in limit order price distribution.
Volatility can be heterogeneous either because traders
have different estimate of volatility or because volatility it-
self is fluctuating. We consider here this second possibility.
In this case, even if all the traders make the same estimate
of volatility at a given time, the unconditional distribution
of limit order price is broad because of the fluctuation of
volatility. We have quoted above that Zovko and Farmer
have observed a positive correlation between volatility and
limit price. This correlation is captured by the solution of
equation (10). The point here is to check whether fluctu-
ation in volatility could be able to determine a power law
distribution of limit order prices. Since volatility σ and op-
timal limit price ∆∗ are proportional in equation (10), in
the framework of the proposed model the distribution of
limit order price is the same as the distribution of volatil-
ity. This means that limit prices are power law distributed
if volatility is power law distributed as Pσ(σ) ∼ σ−ζσ . In
this case ζ∆ = ζσ. In order to match empirical values for
ζ∆ we should expect an exponent ζσ = 2.5 to explain
Zovko and Farmer value and ζσ = 1.5 to explain Pot-
ters and Bouchaud value. Many recent measurement of
volatility distribution find a power law tail, but the fitted
exponent is too large when compared to these values. For
example Liu et al. [17] found a tail exponent ζσ slightly
dependent on the time interval used to compute volatility
and ranging between 4.06 to 4.38. Miccichè et al. [18] fit-
ted a different proxy of volatility finding an exponent 6.27.
Finally the fit reported in the book by Bouchaud and Pot-
ters [19] gives an estimate ζσ = 7.43. Although the proxy
used to estimate volatility can influence significantly the
fitted value of ζσ, it is quite clear that the empirical values
are not consistent with the value needed to explain limit
order price distribution.

In conclusion, in the framework of the present model
heterogeneity in time horizon T appears to be the most
likely explanation of power law distribution of limit order
prices.

4 Empirical analysis

It is quite difficult to assess empirically which of the vari-
ables T , σ and α (or the utility function) is determinant
in explaining the fat tails of limit order price distribution.

Fig. 2. Top. Cumulative distribution of sell limit order price
(in pence) for Astrazeneca traded at LSE in the period May
2000–December 2002. The black dashed line is the uncondi-
tional distribution whereas the solid lines are the distribution
of limit order price conditional to the volatility in the day
when the order was placed. The trading days are divided in
five quintiles according to the volatility value. Bottom. Cumu-
lative distribution of sell limit order price (in pence) for the 10
most active institutions placing limit orders in the stock As-
trazeneca during October 2002. The number in the legend is
the institution code in the LSE database. Blue circles describe
the cumulative distribution for the pool of the 10 most ac-
tive institutions, whereas red squares describe the cumulative
distribution for the pool of all the 104 institutions.

This is due to the fact that T and α are unobservable vari-
ables and volatility σ can be measured in many different
ways. Hence the purpose of the present empirical analy-
sis is to convince qualitatively that the explanation given
above of the power law distribution of limit order prices
is plausible. I investigate this problem by considering the
data of the LSE in the period May 2000–December 2002.

In order to assess the role of volatility fluctuations, in
top panel of Figure 2 I compare the unconditional distri-
bution of ∆ with the limit order price distribution con-
ditional to the volatility in the day when the limit order
was placed. I divide the 675 days of the sample in five
quintiles according to the volatility value and then I plot
the limit price distribution for the different quintiles. It is
seen that P (∆|σ) is weakly dependent on σ strengthen-
ing the conclusion that volatility fluctuations are unable
to explain power law distribution of limit order prices.
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This conclusion is also supported by a direct measure-
ment of ζ∆ by using the Hill’s estimator [16]. The value
obtained for the five subsets ranked in increasing volatility
are ζ∆ = 1.46± 0.07, 1.50± 0.07, 1.51± 0.07, 1.59± 0.07,
and 1.42 ± 0.05. Finally it is worth noting that I obtain
the same weak dependence of P (∆) when the conditioning
is made on the mean volatility in the five previous days
rather than on the volatility in the same day when the
limit order was placed.

As said above, testing for a dependence of limit order
placement from the agents is very difficult due to lack of
data. However the LSE database allows us to track the ac-
tions of individual institutions through a numerical code
which identifies the institution. For privacy reasons the
code is different for different stocks and it is reshuffled each
calendar month. Therefore our analysis will be limited to
a single trading month. I consider as a case study the
stock Astrazeneca in October 2002 (1.1×105 limit orders).
There are 104 active institutions for the considered month
but the activity distribution is quite skewed. In fact the
10 most active institutions are responsible for more than
80% of limit orders. Bottom panel of Figure 2 shows the
limit order price distribution for the 10 most active insti-
tutions. The figure shows that there is a large variation of
the form of the distribution suggesting that the large het-
erogeneity in institution’s limit order strategy could be the
driving factor of power law limit order price distribution.
It is worth pointing out that this empirical analysis can-
not distinguish whether the heterogeneity among different
institutions is due to an heterogeneity in time horizon T
or in the utility function. However the argument above in-
dicates that heterogeneity in utility function should play a
minor role. In conclusion the comparison of the two panels
of Figure 2 indicates that heterogeneity in traders’ behav-
ior is much more important than fluctuation in volatility
in explaining limit order price distribution.

5 Conclusions

I have shown that treating the limit order placement as an
utility maximization problem gives insight on the origin of
the power law distribution of limit order prices. The main
conclusion is that the heterogeneity in time horizon is the
proximate cause of this power law. Empirical analysis sug-
gests that this could be the correct explanation. One could
naively expect that all the three parameters T , α and σ
can simultaneously contribute to the fat tailed distribu-
tion of limit order price. However power law distributions
satisfy nice aggregation properties (see, for example, [20]).
If a variable y is the product of n independent asymptot-
ically power law distributed variables with different tail
exponents, y =

∏
i xi, then y is asymptotically power law

distributed with a tail exponent equal to the minimum
tail exponent of the variables xi. This argument shows
that even if all the variables contribute to the distribution
of ∆, only one determines its tail exponent and our dis-
cussion above indicates that the most likely candidate is
the time horizon T .

The conclusion I draw on the origin of the fat tail of
limit order price distribution is based on the choice of the
utility function. In this paper I consider power law and
logarithmic utility function showing that in both cases
heterogeneity in time horizon seems to be the key vari-
able. This conclusion may not be true for other utility
functions. For example the exponential utility function
u(x) ∝ (1 − exp(−ax)) seems to behave in a different
way. The optimal limit order price cannot be found ana-
lytically, but numerical analysis suggests that in this case
∆∗ ∝ log(T ) rather than

√
T . As a consequence the time

horizon argument leads to P∆(∆) ∝ exp(−(ζT − 1)∆)
rather than a power law distribution. The reason for this
behavior is the extreme risk aversion of an investor with an
exponential utility function which forces the investors to
place limit orders very close to the best price, even when
the investor has a very long time horizon.

Finally, in this paper we have considered limit orders
placed inside the book, i.e. sell (buy) limit orders with a
price higher (lower) than the ask (bid). In other words
we considered only positive ∆. Recent empirical analy-
sis [8,21] shows that also prices of limit orders placed in-
side the spread (∆ < 0) are power law distributed with
an exponent close to the one for ∆ > 0. One is tempted
to extend the utility maximization argument to describe
limit orders inside the spread. However limit orders in the
spread are usually placed by agents with a very different
strategy with respect to traders placing orders for large
positive ∆. Other risk factors, such as adverse selection,
enter in the decision process. Even if the utility maximiza-
tion approach can be useful in tackling this problem, the
case ∆ < 0 is outside of the scope of the present paper
and will be considered elsewhere.
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Appendix A: Logarithmic utility function

We consider here the case of a logarithmic utility function
u(x) = C log(1 + cx). The expected utility is

UT,σ(∆) = erfc
[

∆√
2σ2T

]

C log(1 + c∆). (15)

By setting to zero the derivative UT,σ(∆) with respect to
∆ and considering large ∆, one obtains

h(z) � c
√

2σ2T (16)

where z = ∆/
√

2σ2T and

h(z) ≡
exp

[√
π

2
ez2

erfc(z)
z

]

z
. (17)
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Thus the optimal limit order price is

∆∗ =
√

2σT 1/2h−1(c
√

2σ2T ). (18)

As for the power utility function the optimal limit price
∆∗ is expressed implicitly in terms of an inverse function.
The main difference with equation (10) is that the argu-
ment of h−1 now contains the variables T and σ and it is
not immediately obvious what is the asymptotic behavior
of ∆∗ for large T . In order to answer this last question we
need to study the asymptotic behavior of h−1. The func-
tion h(z) diverges in z = 0 and is monotonically decreas-
ing. Thus the asymptotic behavior of h−1 is determined
by the behavior of h(z) around z = 0 which is

h(z) � 1
e

exp
[√

π
2z

]

z
. (19)

We prove that h−1(x) ∼ 1/ log(x). In fact

lim
x→∞ log(x)h−1(x) = lim

z→0
log(h(z))z (20)

� lim
z→0

log(
1
e

exp
[√

π
2z

]

z
)z =

√
π

2
. (21)

This result can be used to determine the asymptotic be-
havior of ∆∗. From equation (18) we get

∆∗ ∼ 2
√

2√
π

σT 1/2

log(c
√

2σT 1/2)
∼ T 1/2

log T
. (22)

In conclusion the optimal limit price for a logarithmic util-
ity function scales with T in the same way as for the power
utility function, except for a logarithmic correction.

Finally we consider what is the distribution of limit
order price ∆ under the assumption of logarithmic utility
and of power law distribution of time horizon, PT (T ) ∼
T−ζT . We know that P∆(∆) = PT (T ) dT

d∆ . Since ∆ ∼√
T/ log T , it is dT/d∆ = (d∆/dT )−1 ∼ √

T log T . Thus
implicitly

P∆(∆) ∼
√

T log T

T ζT
. (23)

It can be shown that

P∆(∆) ∼ 1
∆2ζT −1 (log ∆)2ζT −2

. (24)

In order to prove this result we consider the limit of
∆2ζT −1 (log ∆)2ζT −2P∆(∆) for ∆ → ∞ and we perform
the limit by transforming it in a limit T → ∞. We show
that this limit is a finite non-vanishing constant, proving
equation (24).
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